2025
- Centofanti, F., Lepore, A., Palumbo, B. (2025) An Adaptive Multivariate Functional Control Chart. Accepted for publication in Technometrics. [code]
- Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2025) An Adaptive Multivariate Functional EWMA Control Chart. Journal of Quality Technology, 57(1):1–15. [doi] [arXiv] [code] [bib]
- Centofanti, F., Lepore, A., Kulahci, M., Spooner, M.P. (2025). Real-time monitoring of functional data. Journal of Quality Technology. [doi] [arXiv] [code] [interactive plot] [bib]
2024
- Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control Chart. Technometrics, 66(4):531–547. [doi] [arXiv] [code] [bib]
- Centofanti, F., Hubert, M., Palumbo, B., Rousseeuw, P. J. (2024). Multivariate Singular Spectrum Analysis by Robust Diagonalwise Low-Rank Approximation. Journal of Computational and Graphical Statistics. [doi] [arXiv] [code] [bib]
- Centofanti, F., Lepore, A., & Palumbo, B. (2024) Sparse and smooth functional data clustering. Statistical Papers, 65:795–825. [doi] [arXiv] [code] [bib]
- Capezza, C., Lepore, A., Paynabar, K. (2024). Stream-Based Active Learning for Process Monitoring. Preprint available on arXiv:2411.12563 [arXiv] [code] [bib]
- Capezza, C., Centofanti, F., Forcina, D., Lepore, A., Palumbo, B. (2024) Functional Mixture Regression Control Chart. Preprint available on arXiv:2410.20138 [arXiv] [code] [bib]
- Centofanti, F., Hubert, M., Rousseeuw, P. J. (2024) Robust Principal Components by Casewise and Cellwise Weighting. Preprint available on arXiv:2408.13596 [arXiv] [code] [bib]
2023
- Centofanti, F., Colosimo, B. M., Grasso, M. L., Menafoglio, A., Palumbo, B., & Vantini, S. (2023) Robust functional ANOVA with application to additive manufacturing. Journal of the Royal Statistical Society Series C: Applied Statistics, 72(5):1210–1234. [doi] [arXiv] [code] [bib]
- Capezza, C., Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., & Vantini, S. (2023) funcharts: Control charts for multivariate functional data in R. Journal of Quality Technology, 55(5):566–583. [doi] [arXiv] [code] [bib]
- Centofanti, F., Lepore A., Menafoglio A., Palumbo B., Vantini S. (2023) Adaptive smoothing spline estimator for the function-on-function linear regression model. Computational Statistics, 38:191–216. [doi] [code] [bib]
- Kulahci, M., Lepore, A., Palumbo, B., Sposito, G. (2023) Functional Neural Network Control Chart. Preprint available on arXiv:2311.11050 [arXiv] [code] [bib]
2022
- Centofanti, F., Fontana M., Lepore A., Vantini S. (2022) Smooth LASSO estimator for the function-on-function linear regression model. Computational Statistics & Data Analysis, 176. [doi] [arXiv] [code] [bib]
- Lepore, A., Palumbo, B., Sposito, G. (2022) Neural network based control charting for multiple stream processes with an application to HVAC systems in passenger railway vehicles. Applied Stochastic Models in Business and Industry, 38(5):862–883. [doi] [code] [bib]
2021
- Capezza, C., Palumbo, B., Goude Y., Wood, S.N., Fasiolo, M. (2021) Additive Stacking for Disaggregate Electricity Demand Forecasting. The Annals of Applied Statistics, 15(2):727–746. [doi] [arXiv] [code] [bib]
- Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B. Vantini, S. (2021) Functional Regression Control Chart. Technometrics, 63(3):281–294. [doi] [bib]
- Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2021) Functional clustering methods for resistance spot welding process data in the automotive industry. Applied Stochastic Models in Business and Industry, 37(5):908–925. [doi] [arXiv] [code] [bib]
- Capezza, C., Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., Vantini, S. (2021) Functional regression control chart for monitoring ship CO2 emissions. Quality and Reliability Engineering International, 38(3):1519–1537. [doi] [bib]
- Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2021) A Functional Data Analysis Approach for the Monitoring of Ship CO2 Emissions. Gestao & Producao, 28(3). [doi] [bib]
2020
- Capezza, C., Lepore, A., Menafoglio, A., Palumbo, B., Vantini, S. (2020) Control charts for monitoring ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied Stochastic Models in Business and Industry, 36(3):477–500. [doi] [bib]
- Reis, M. S., Rendall, R., Palumbo, B., Lepore, A., Capezza, C. (2020) Predicting ships’ CO2 emissions using feature-oriented methods. Applied Stochastic Models in Business and Industry, 36(1):110–123. [doi] [bib]
- Lepore, A., Palumbo, B., & Pievatolo, A. (2020) A Bayesian approach for site-specific wind rose prediction. Renewable Energy, 150:691–702. [doi] [bib]
2019
- Capezza, C., Coleman, S., Lepore, A., Palumbo, B., Vitiello, L. (2019) Ship fuel consumption monitoring and fault detection via partial least squares and control charts of navigation data. Transportation Research Part D: Transport and Environment, 67:375–387. [doi] [bib]
- Lepore, A., Palumbo, B., Capezza, C. (2019) Orthogonal LS-PLS approach to ship fuel-speed curves for supporting decisions based on operational data. Quality Engineering, 31(3):386–400. [doi] [bib]
- Erto, P., Lepore, A., Palumbo, B., & Vanacore, A. (2019) A Bayesian control chart for monitoring the ratio of Weibull percentiles. Quality and Reliability Engineering International, 35(5):1460–1475. [doi] [bib]
2018
- Lepore, A., Palumbo, B., & Castagliola, P. (2018) A note on decision making method for product acceptance based on process capability indices Cpk and Cpmk. European Journal of Operational Research, 267(1):393–398. [doi] [bib]
- Lepore, A., Palumbo, B., Capezza, C. (2018) Analysis of profiles for monitoring of modern ship performance via partial least-squares methods. Quality and Reliability Engineering International, 34(7):1424–1436. [doi] [bib]
- Erto, P., Giorgio, M., & Lepore, A. (2018) The generalized inflection S-shaped software reliability growth model. IEEE Transactions on Reliability, 69(1):228–244. [doi] [bib]
2017
- Lepore, A., Reis, M.S., Palumbo, B., Rendall, R., Capezza, C. (2017) A comparison of advanced regression techniques for predicting ship CO2 emissions. Quality and Reliability Engineering International, 33(6):1281–1292. [doi] [bib]